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Abstract

The present work is concerned with an analysis of progressive interface failure under normal compressive stress and
varying shear stress using the cohesive crack model. The softening model is assumed and frictional linear stress at con-
tact is accounted for. A monotonic loading in anti-plane shear of an elastic plate bonded to a rigid substrate is consid-
ered. An analytical solution is obtained by neglecting the effect of minor shear stress component in the plate. The elastic
and plate interface compliances are included into the analysis. Three types of solutions are distinguished in the progres-
sive delamination analysis, namely short, medium and long plate solutions. The analysis of quasi-static progressive
delamination process clarifies the character of critical points and post-critical response of the plate. The analytical solu-
tion provides a reference benchmark for numerical algorithms of analysis of progressive interface delamination. The
case of a rigid—softening interface was treated in a companion paper, where also cyclic loading was considered.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An analysis of growth of interlayer damage and of the resulting failure at the interface is one of more
important problems in mechanics of composite materials, rocks and ceramics. A comprehensive survey
of research in this area can be found, for instance, in the article by Hutchinson and Suo (1991), who dis-
cussed mixed mode crack propagation using the Griffith energy condition. In this paper, we shall apply the
cohesive crack model assuming the existence of a damage (or plastic) zone ahead of the crack. The interface
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layer in this zone is assumed to undergo an elastic—plastic deformation and damage inducing plastic soft-
ening. We shall consider the case of compressive normal traction acting at the interface with accompanying
frictional slip developing along the crack portion. For cyclic loading, a set of progressive and reverse slip
zones develops at the interface and frictional hysteretic effects occur accompanying cyclic dissipation and
wear of surface asperities. The coupling between the propagation of damage zone and the frictional dissi-
pation due to altering slip orientation may then occur.

The cohesive zone model has been used by numerous researchers in investigating crack growth, cf. for
instance, Ortiz (1996), Hillerborg et al. (1976), Yang and Ravi-Chandar (1997). However, the effects of
interface friction have not been fully investigated. The interaction of asperities at cracked interfaces and
associated effects were studied in some papers, cf. Gross and Mendelsohn (1989), Bennison and Lawn
(1989), Evans and Hutchinson (1989). The analysis of asperity interaction and of effects of micro-dilatancy
in problems of fiber pullout was presented by Mréz and Stupkiewicz (1995). The cyclic loading of an inter-
face was investigated by Shen and Mréz (2000), Mréz and Shen (1999) and Mréz and Biatas (accepted for
publication). In fact, the coupled phenomena occur at the interface such as wear and damage growth, fric-
tional slip and localized temperature effects, asperities crushing or flattening with the associated dilatancy
phenomena.

The present work is aimed at formulation of progressive damage and slip at the contact interface under
compressive normal stress and in-plane loading on the plate boundary. The analytical solution is referred to
the case of anti-plane shear induced by tangential tractions. A cohesive zone is assumed ahead of crack tip
with a linear softening response for the bond layer. The analysis clarifies the character of instability points
occurring due to interaction of damage zone with the boundary and presents a quasi-static solution for the
progressive delamination process. The analytical analysis is next verified by the finite element analysis of the
plate delamination. A solution for a rigid—softening interface subjected to monotonic and cyclic shear load-
ing is presented in a companion paper by Mréz and Biatas (accepted for publication).

2. Problem formulation

Consider a plate resting on a rigid foundation as schematically presented in Fig. 1. The plate is bonded to
the foundation by a thin interface layer of thickness much smaller than the plate thickness. The upper plate
surface is acted on by surface tractions ¢ inducing compressive normal stresses at contact interface. The
edge traction T may induce three modes of delamination or their combination, namely opening, longitudi-
nal and transverse shear modes, analogous to fundamental modes in fracture mechanics. Assuming the
plate thickness to be small as compared to its other dimensions, its response may be described within linear
elasticity equations and the interaction tractions of the bonding interface can be treated as in-plane body
forces acting on the plate. If there is no opening mode at the interface, the plate deformation state can be
described by assuming plane stress conditions.

By assuming that there is a frictional contact at the interface between the plate and the substrate gov-
erned by the Coulomb’s law, the traction ¢ normal to the upper plate surface induces the frictional stress

I p—
s ; T s’
opening longitudinal transverse
mode shear shear

Fig. 1. Basic modes of delamination.
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SUBSTRATE

Fig. 2. A plate in plane stress condition resting on a rigid substrate.

having the magnitude |t| = p|t|. The friction stress direction remains unknown. When a rigid—frictional
interface is assumed, we have two zones developed at the interface, namely QV, where the structure is fully
bonded and Q®, where the bond is damaged and there is a frictional contact. Let > denote the delamina-
tion front between regions Q" and Q®, as schematically presented in Fig. 2. The displacement field w has
to be continuous across 2

[w] =0, (1)

where [m(x)| = m(x") —m(x"), x € X is the discontinuity of function m(x) across = (x" =x", x" € Q,
x~ € Q). On the other hand, for a rigid—frictional interface there is discontinuous switch of shear stresses
at the interface across the boundary X:

[tn] # 0, (2)

where n is a unit vector pointing into Q" and normal to the delamination front.
The time derivative of condition (1) provides a relation between the velocity field v = w = Ow/0¢ and the
discontinuity of displacement gradient across X:

W] +va[(Vw) -n| =0, (3)
where v, is the velocity of delamination front. The frictional tractions at the interface can be treated as in-
plane body forces, so the equation of equilibrium takes the form:

Dive +1 =0, (4)
with 6;; = to;; (i,j = 1,2) being a stress tensor in the plane stress case. The interfacial frictional tractions
satisfy the Coulomb’s law:

el < ult for [i| =0, -
el = ultl, ©/le| = /li| for [ir] > 0.
The boundary conditions on S; are

eN =T, (6)
where N is the unit normal vector to S;. Additional boundary conditions on the delamination front X are
provided by Egs. (1) and (3) and have the form:

(w) =0,  [w]=—u[(Vw)-n]. (7)

To fully formulate the delamination process for an elastic plate bonded to a rigid substrate, we define the
strain rate tensor &:

& =1(Viw+ Vi) (8)
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and the linear constitutive equation for the plate material:
& = Ci, )

where C is the elastic tensor.
The rate of dissipated energy is a difference between the rate of work done on the system by external
forces T and the rate of change of elastic energy:

. d
b= T-st——/ U(e)dQ, (10)
s dt Joo
where U(g) = 1eCe is the specific elastic energy per unit volume. The time derivative of the total elastic en-
ergy can be rewritten in the form:

i/ U(s)dQ:/ &-édQJr/U(s)vndZ, (11)
dt Joo Q@ 5

where the fact, that the delamination front X changes with time and propagates during the loading process
has been used to derive the second term on the right side of above equation. By substituting (4), (6), (7) and
(11) into Eq. (10) and making use of Gauss theorem, we can write the formula for the rate of dissipated
energy

D:/Q(z)r-i;dQ—f—/Z[(&n)~(Vu~n)—U(s)]vndZ. (12)

The first term in the above equation refers to frictional dissipation at the interface, the second is related to
the energy dissipated at the delamination front.

In the present paper, the bonding layer will be treated as an elastic—plastic softening interface for which
the response is expressed in terms of contact stress components and the conjugate displacement disconti-
nuities. As the substrate is assumed as rigid, the plate displacement field at the interface represents the dis-
placement discontinuity for the interface. The constitutive equations for the interface will be referred to
elastic, elastic—plastic and frictional slip regimes. We shall now discuss these relations in more detail.

2.1. Constitutive relations for the interface

Considering an interface S, we neglect the in-plane stress components and express the deformation re-
sponse in terms of the interface traction components o, 7|, 7,,, Where

o =1, 6i,, T =1 - 6y, Tm = Im * Oy, (13)

and i, is the unit normal vector to S, #; and i, are the unit vectors within the S, forming the orthonormal
basis. The displacement discontinuity vector é on S can also be decomposed into normal and tangential
components d,, d; and d,,. The total displacement discontinuity and its rate are decomposed into elastic
and slip components, thus:

§=0+6, b6=6+5. (14)

The constitutive equations relating the interface tractions and the reversible part of displacement discon-
tinuity are of the form:

6=Kpo., 1=K, im=Kd,, (15)
where K, and K is an interfacial stiffness respectively in tension and shear. The irreversible part of displace-
ment discontinuity is related to the failure process at the interface and expressed in the framework of theory
of plasticity by an evolution of failure function F. The proposed failure function has the form:
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T+ po —1.(d) <0 for ¢ <0,

F(O',‘E): 0\ 2
(%) 024+ 12 —1(0.) <0 foro >0,

c

where

— /242
T=1/7 + 75,

w is a friction coefficient and t4(J.) the critical shear stress for ¢ = 0. The failure parameter J, is defined as

where M is a material constant expressing the influence of opening mode on failure evolution.
Thus, for the compressive traction acting at the interface we have the Coulomb friction law relating the
shear and normal stresses, whereas for tension the damage surface is an ellipse. The function F'is presented

in Fig. 3.
The assumed slip potential is of the form:
T — 7c(0e) for o < 0,
G(o,t) = 2 18
(1) (;—%) a2+ 1> —1.(0.) foro = 0. (18)

Thus, we have an associated flow rule for positive normal stresses and non-associated flow rule for inter-
face subjected to compression. The reason for doing that is to neglect the contact dilatancy. It should be
noted, that the slip rule remains continuous when the normal stress ¢ changes sign, though the damage
function F has a slope discontinuity for ¢ =0, see Fig. 3.

The sliding rule has a form:

-39 5=
ot Jo
where 2 is a positive slip multiplier.

The evolution equation expresses the failure development at the interface and relates the increasing sep-
aration &° with the vanishing interfacial traction. In the present study, the linearly decreasing function has
been assumed:

F<0, AF=0, (19)

0 — K. 0e e <z

<
7.(0e) =
0 O =

(20)

allowing for an analytical solution of anti-plane shear state presented in the following section.

damage

locus
limit
friction
locus

Fig. 3. Yield function F and plastic potential G.



M. Bialas, Z. Mroz | International Journal of Solids and Structures 42 (2005) 44364467 4441

Fig. 4. Stress—displacement response for elastic—plastic layer under constant compressive normal stress.

In the case of monotonically varying shear loading and constant compressive normal traction ¢ = con-
stant, Eq. (19) can be integrated in order to provide the total slip displacement:

5 :ia—G:)v, F'<o0, JF' =0. (21)
ot
However, when unloading and reverse slip occurs, the memory of the previous slip displacement must be
stored and added to the reverse slip displacement. Fig. 4 presents the shear stress—tangential sliding re-
sponse for the interface layer in the case of progressive delamination. For specified o, the shear stress first
reaches the maximum critical value 7. and then in the elasto-plastic softening process, decreases to the limit
friction value po in the fully damaged state. We can therefore write:

t=Kd, 0<d <& =2, (22)
K,
t =1, — K(3, — &), 5:<5l<5f:55+“;{“", (23)
T=puo, 0 >0, (24)
where K, > 0 is the elasto-plastic softening modulus.
Assuming the decomposition (14), we can write in the softening regime:
5oy sot_t__ 25
t t + t K, K, K, ) ( )
where K; is the softening modulus associated with the plastic slip component J;. From Eq. (25) we have
1 1 1 K,
11 1 K (26)
K, K, K 1 - K. /K,

Thus, the softening response for the elasto-plastic interface is dependent on the ratio K./K;. When
{=K,/K;=1, we have the brittle response of the interface. On the other hand, when K; — oo, that is
for rigid—plastic response, there is K; = K.

The discussion of a dilatant contact condition can be found in the paper by Mréz and Seweryn (1998).

2.2. Anti-plane shear state
In the present section we shall formulate equations of an anti-plane shear state allowing for analytical

solution of delamination process. Let us consider a plate of length L, width b, and thickness ¢, bonded
to a rigid foundation by an interface layer of thickness /, h < ¢, as shown in Fig. 5.
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Fig. 5. Plate bonded to the substrate. Anti-plane shear state b > L.

The uniform compressive traction 6., = —¢ is assumed to act at the upper plate surface. The plate is
loaded by the shear force T'=1,,(0)4, A = bt, at the end section x = 0. The other end at x = L remains
traction free. Assuming the transverse dimension b to be larger than the plate length L, the flexural effects
can be neglected and the state of anti-plane shear can be assumed with two shear stress components 7, and
7,., S0 that the equilibrium equation is:

01y 01y
w  9hz 27
ox Oz ’ (27)
and ¢.. = —o = constant is the initial stress induced by the lateral compressive traction along the z-axis.
Denoting by w = w(x, z) the displacement field along the y-axis and using the Hooke’s law:
ow ow
Ty = —ng7 Ty = —Glg7 (28)
the equilibrium equation (27) takes the form:
*w *w
Gl—+G,— =0 29
oo T T (29)
where G| and G, are the shear moduli along x and z axes. The boundary conditions at the interface z = 0:
T,: = —17; at the upper boundary z = —#: 7, = 0 and at the transverse boundaries x = 0: 7,,(0) = fo(»,2),

x = L: 7,,(L) = 0 should be satisfied.
A simplified solution can be generated by assuming the distribution of 7,., namely:

5 = —t(x) (1 +§) (30)

where 7(x) is the interface shear stress at z = 0. The equilibrium (27) takes the form:

0ty 7
—+-=0. 31
Ox + t (31)
Let us note that this form of (31) can be obtained by assuming the shear beam model, that is assuming
W = w(x), Ty, = —Gdw/dx and writing the equilibrium equation for the elastic beam interacting with the

interface cohesive layer:

A dgf bt =0, (32)
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Fig. 6. Fiber pullout.

where 4 = bt denotes the transverse cross section area. This formula can be rewritten in the form:

d*w

This form of equation can be generated from (29) by assuming G, — oo, that is neglecting shear defor-
mation along the z-axis and regarding the shear stress 7,. as a reaction. Alternatively, this equation can be
obtained from (29) and (30) by satisfying the equilibrium equation at the interface z = 0. In the following,
we shall provide the analytical solution using the simplified equation.

It should be noted, that the same set of equations apply for a fiber pullout problem as presented in Fig. 6.
By assuming the problem to be axisymmetric and reflecting the deformable medium surrounding the fiber
by the interface constitutive equation with the surrounding medium to be rigid, one obtains the equilibrium
equation

d
y a" br=0. (34)

The three dimensional effects associated with normal stresses due to Poisson’s ratio are then ignored.
Additionally, treating the fiber as an elastic body, we have the linear constitutive relation between displace-
ment field # and normal stress o:

du
= -E— 35
6 1 ) ( )

with E being the Young modulus. By substituting (34) into (35), one obtains a differential equation in the
form:

2
%E% +hr=0 (36)

identical to (33). The results of fiber pullout based on such a one dimensional model of decohesion were
discussed by Schreyer and Peffer (2000).

3. Analytical solution

In the following we shall assume progressive damage at the material interface and examine the effect of
progressive delamination on stress and displacement fields.
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By substituting Eqs. (22)—(24) into (33), one obtains ordinary differential equations providing formulas
for displacement fields w®, w P and w', respectively for elastic, plastic and frictional interfaces. Thus, for the
elastic case we have:

K
wi(x) = Cie” + Cre™, r= E;, (37)
whereas the displacement fiecld within the plastic zone is given by the following formula:
M@:wam+QmW@+i+i,m:¢E. (38)
K. K, Gt
In the case of frictional interface, the displacement field takes the form:
M@:g@w%gﬁ+qmuk (39)

In the above formulas C;, C,, C;, Cy4, Cs and Cg are the integration constants to be specified from
boundary and continuity conditions.

We shall assume monotonic damage at the material interface and examine the effect of progressive
delamination on stress and displacement fields. In order to do that, we shall combine functions (37)—(39)
using appropriate boundary and continuity conditions. Three different solution types can be distinguished,
each being defined by the plate dimensions. They are characterized in the following sections where the con-
secutive stages of delamination process are described.

3.1. Short plate solution

The interface is elastic during the first stage of loading. The plate displacement field is provided by Eq.
(37) with the integration constants C; and C, to be specified from the boundary conditions:

w'(L) =0,  w(0) = wy, (40)

with wq being the displacement of loaded end x = 0 and w® denoting the slope of the deflection curve. The
displacement field w° takes the form:

we(x, wy) = WOW (41)
The corresponding 7, stress can be obtained from Eq. (28):

T, (x, W) = WOGF%L(U)X)] (42)
Formula (33) provides the shear stress at the plastic interface:

(6, wo) = Kowo cosh[r(L — x)] (43)

When the displacement w reaches the value t./K;, the plastic zone appears at the loaded end, as pre-
sented schematically in Fig. 7 and the second delamination phase begins. The elastic zone displacement field
can be obtained from Eq. (37) with the integration constants satisfying the conditions:

Tc

w*(L) =0, w(s1) = X
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Phase 1
T(X, W)
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L
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friction plastic elastic
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ol X
. Sy — L
friction
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Limit ‘ state

T(X)

of LTI x
L

friction zone

w(x)

Fig. 7. Short plate solution. Delamination phases.

The value of s, specifies the coordinate of the transition point between elastic and plastic (cohesive)
zones. The stress and displacement fields within the elastic zone take the form:
r(2L4s1) r(2x+s1)
Te € e
_Ceer; (44)

€
w(x,s1) = -
) Kt e2Lr e2rs1 )

T er(L-H‘l)

T (x,51) = 2Gr—

) Kt e2Lr + e2rsi Slnh[l"(L o X)], (45)

Te er(L+sl)
Kt eZLr + lesl

The displacement field within the plastic zone is provided by Eq. (38) with the integration constants Cs
and C, specified from the continuity conditions:

°(x, 51) = 2K, cosh[r(L — x)]. (46)

wP(s1) = w'(sy) = ;{—ct, wP(s1) = w(s1).
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The resultant stress and displacement fields take the form:

wP(x,s1) = % {1 — risH sin[rs(s; — x)}} + ;—:{1 — cos[rs(x — s1)]}, (47)
rﬁv(x,sl) = —Grs;{—cS sinfrg(x — s1)] — Gr;—iHcos[rs(sl —x)], (48)
P (x,51) = 1. cos[rs(x — s1)] + ‘Ecr—;H sinfrg(s; — x)], (49)

with H = tanh[r(s; — L)].
The short plate solution takes place when the plate is short enough for the plastic zone to cover the entire
length L. This is true when the following condition is satisfied:
Te  Te — UO

wp(x:0,s1:L)<wp:1?+ o (50)
t S

stating that there is no frictional zone developed at the interface while its elastic part has finally vanished.
The inequality (50) reduces to

L G no
— K -
- S 1/ Starccos - (51)

where the condition put on the plate dimensions is shown explicitly. This condition may be rewritten in a
dimensionless form:

¥ < arccos, 1 =1L, n= ?, (52)
C
requiring the dimensionless parameter y to be bounded. In a particular case, we can vary the softening mod-
ulus K keeping the plate length constant and, as a result, we will obtain a short plate solution. It is seen that
the system response depends on a complex interaction between mechanical and geometrical characteristics
to be captured by two dimensionless parameters y and #.
There is only plastic zone at the interface during the third loading phase, as presented schematically in
Fig. 7. The displacement field is given by Eq. (38), where the integration constants can be specified from the
boundary conditions:

w? (L) =0, wP(0) = wy, (53)

with wj being the loaded end displacement. At this stage, the value of w{ becomes the control parameter.
The displacement field, shear stress 0, and interfacial traction t" fields are:

P Py P_i_& COS[FS(L_‘X:)] i i 0< <L 54
w (x7 WO) (WO Ks K[ COS(FSL) +Ks +K17 AL, ( )
To T\ sinfrg(L — x)]
T)rcjy(xawg):_Grs<W8_E_E)Wa 0<x<L, (55)
A S E (k) R SN 56
v we) <Kt+KS W0> sin(sL) 0 S ST (56)

A friction zone starts to develop at the interface for the displacement wj reaching w, = (1. — uo)/K + 7./
K, and a subsequent loading phase begins, as presented in Fig. 7. There are two interfacial zones, namely



M. Bialas, Z. Mroz | International Journal of Solids and Structures 42 (2005) 44364467 4447

plastic and friction with respective displacement fields given by Egs. (38) and (39). The integration con-
stants are specified from the boundary and continuity conditions:

W) =0,  wP(s:) =wi(s) = HI 4 T W (55) = w'(s,), (57)

K. Tk’

where s, is a coordinate of the transition point between plastic and frictional zones. The displacement and
stress fields take the form:

e plastic zone, s, < x < L:

(x.5y) = T 4 T _ B coslr(L —x)]
w (X,Sz) Kt +Ks Ks COS[rS(L - SZ)] ’ (58)

b o sin[rg(L — x)]

p _ 0 g 2Us\e )]
) = 5 oL = se)] >
. _ cos[rs(L —x)]
°(x, 57) 'ua—cos[rs(L ) (60)
e friction zone, 0 < x < 5t
g arg Tc — MO Tc
w(x,57) :;_Gt(x_sz)z +HKS tan[rs(L — s7)](x — s2) + Ksﬂ +IZ’ (61)
¢ uo uorsG
rxy(x,sz) == (x—s2) — : tan[rs(L — s,)], (62)
' (x,5,) = uo, (63)

so for this loading phase the value of s, takes over wg as the control parameter and its monotonic increase
describes the damage growth.

For s, equal to L the interface has been fully damaged and progressive delamination is accomplished.
The limit shear stress subjected to the plate equals
: o
(o) = £ L, (64)
and is equilibrated by the frictional forces at the interface.

Fig. 8 presents relations between the loading traction 7,,(0) and the loaded end displacement w(0) for
various values of dimensional parameters y = r,L and { = K;/K;, where K, is the softening modulus asso-
ciated with the plastic slip component and K; is the interface elasticity coefficient. Thus, the dimensionless
parameter { describes the effect of interface compliance and its softening response. The condition (52),
defining a short plate solution in terms of y and #, is satisfied. Fig. 8(a) presents the influence of parameter
¥ that can be interpreted as the plate length L or the interface softening modulus K. Fig. 8§(b) presents the
effect of interfacial elasticity defined by the value of {. The dashed line is a solution obtained for an interface
with no softening effect, simply frictional model. The sudden drop in the 7,,(0) value is caused by the end
effect, that is the interaction between the interfacial cohesive zone and the stress free end at x = L. It is seen,
that the delamination process cannot be executed by stress controlled loading. Such a procedure would lead
to a dynamic, unstable response. It is presented in Fig. 8(a) that the normalized maximum traction
(1) /rlr‘}m (0) subjected to the plate becomes higher as the length L, that is the dimensionless parameter
i, decreases. Thus, for a smaller plate we have a higher normalized strength of the structure. This scale ef-
fect is a result of softening law used for the material interface. The solution presented in Fig. 8§(b) for { =0
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Txy (0)
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(b) 0.2 0.4 0.6 0.8 1 1.2 Wp

Fig. 8. Short plate solution. The loading traction 7,,(0) versus loaded end displacement w(0) for: (a) various values of y = r,L—the
influence of plate length L; (b) various values of { = K;/K——the influence of interface compliance with respect to its softening response;
{ =0, rigid-softening—frictional interface; { = 1, perfectly brittle interface. The dashed line refers to the rigid—frictional model of the
interface.

refers to rigid—plastic frictional interface. For subsequent values of { the interface becomes more compliant
with respect to its softening behaviour. For the value of { = 1 we have a brittle fracture of the bonding. It is
seen that the interfacial elasticity can change the structure response significantly, though it does not enter
the criterion (52) for a short plate solution.

3.2. Medium length solution

Let us assume now that the condition (51) is not satisfied and, as a result, there are following interface
zones developed during the third loading phase: friction, plastic and elastic, as schematically presented in
Fig. 9. The displacement fields for elastic, plastic and friction zones are given by Eqgs. (37)—(39) respectively.
The integration constants can be specified from the boundary and continuity conditions:

Tc

wi(L) =0, w(s1) =wP(si) = X, w(s1) = w”(s1), (65)
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Fig. 9. Medium plate solution. Delamination phases.

Te  Tc— UO
K, * K
where, as before, s, is the coordinate of the transition point between elastic and plastic regions, and s, indi-
cates the point between plastic and undamaged zones. Assume that s; is now a monotonically increasing
control parameter of the loading process and both shear stress and displacement at the loaded boundary
x =0 are specified in terms of s;. With s; being the loading parameter, it subsequently follows from the
conditions (65) and (66):

WP (s7) = wi(sy) = , WP (s5) = w'(s1), (66)

Hrg/r + \/1 + (Hrs/r)2 —n?

2
— 51 — = arcts 67
5y =8| rsdern [0 , (67)
with H = tanh[r(s; — L)]. The displacement and stress fields are:
e elastic zone: 51 < x < L,
r(2L+s1) r(2x+s1)
R _Te € +e
w(x,sl)—ze W7 (68)
T € (L+s1)
%, (x,51) = 2G X 2 1o sinh[r(L —x)], (69)
. 7. € (L+s1)
T (X,Sl) = 2KSZ m Sh[l"(L x)], (70)
e plastic zone: 5, < x <y,
WP (x,51) = <41 — = Hsin[ry(s) — x)] b + {1 — cos[rs(x — 51)]} (71)
’ K I K ’
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Te . Te
o (x,51) = —GrsfS sinfrg(x — s1)] — GFZHcos[rs(sl —x)], (72)
P(x,s1) = 1. cos[rs(x — 51)] + rcr—;H sinfrs(s; — x)J; (73)

o friction zone: 0 < x <5,
Te — UO

f _ Mo s Te
w (x,s1) = T (x — $72) +Ks (x —$)Z +K¢ + X (74)
o 7
o (x,51) = —MT(x—sz) A (75)
' (x,s1) = uo; (76)
where
Z=—\/1 =1 + tank[r(s, — L))K. /K. (77)

Eq. (67) provides s, as a function of s;.
One should remember that the formulas (74)—(76) are valid for monotonic interface loading only, that is
when the following condition is satisfied:

Wwh = 0. (78)

With s, being the loading parameter during the third delamination stage, the inequality (78) can be rewrit-
ten as

oWl (x, s1)
6S1

stating, that the fully damaged interface slides forward. However, the above derivative changes sign indi-
cating that there exists a zone where the interface is unloaded and the resultant interfacial stress are lower
than 7 = ue. In other words, the plate exhibits reverse displacements, as schematically presented in Fig. 9.
Let s3 be the value of x where the derivative awr(x,sl)/f)sl vanishes:

ow' (x, s1)
aS1
and becomes negative for 0 < x < s3. The condition (80) determines the position of a transition point be-

tween the forward (w > 0) and the reverse displacement zone (w < 0). By substituting (74) into Eq. (80), one
obtains:

>0 (79)

=0, (80)

r(r* = 3r2)nZ coshd — (r* + r?)(rnZ cosh 3d — 4r;sinh d)

s3 = 8, — 2coshd x 5 )
ror{r2(3n* — 8) — (rn)” + n[4r2 cosh 2d + (1 + r2) cosh 4d]}

(81)

where
d = }"(L — S1>7

and Z is given by Eq. (77). Formula (81) is an increasing function of s; meaning that the length of reverse
slip zone increases while the elastic zone becomes shorter, that is the control parameter s, approaches L.
The value of s3(s; = L) is the length of reverse slip zone at the instant when the elastic interfacial area van-
ishes. It becomes obvious that the inequality

S3(S1 = L) g 0
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provides a condition for no reverse displacement zone at the interface during third loading phase. The
above inequality is satisfied for the length to height ratio L/t smaller than

L G n
7 < K_J (arccos n + ﬁ) s (82)

or (in a dimensionless form):

xgarccoer—%nz, ¥ =rL, n:?. (83)

A plate satisfying the inequality (83) will provide a medium length solution. In a dimensionless form, it is
defined by the following formula:

n
arccosn < y < arccosy + \/1__;72 (84)

As in the case of short plate solution, it is a condition put on parameter y that is expressed in terms of
both the plate length and the softening modulus Kj. It is seen that two dimensionless parameters y and 5
govern the system response.

The whole interface is damaged during the subsequent delamination stage, that is for s; = L and the
value of s, becomes the control parameter of the loading process, so the considered situation is identical
with the fourth delamination phase of the short plate solution. There are plastic and friction zones at
the interface and the displacement fields are in the form of (38) and (39), with the integration constants sat-
isfying the formulas

T  Tc— UO
K, K,

They are identical with boundary and continuity conditions (57) for the fourth delamination phase of
the short plate. It becomes obvious that the obtained stress and displacement fields are the same as Egs.
(58)—(63).

Fig. 10 presents a relation between the loading traction ,,(0) and the loaded end displacement w(0) for
various values of dimensional parameter y = r,L and { = K,/K;. The condition (84) for a medium plate
solution is satisfied. As in the previous case, the dashed line is a solution obtained for an interface with
no softening effect, simply rigid—frictional interface. Similarly to the short plate solution, the delamination
process cannot be realized by stress controlled loading, which would lead to dynamic response. It should be
noted, that for increasing y (plate length or the softening modulus Kj) the 7,,(0) — w(0) relationship be-
comes steeper. The last section of the y = 1.58 curve is almost vertical which refers to the existence of only
plastic and friction zones at the material interface. The scale effect is manifested by a decrease in the nor-
malized maximum traction 7,,(0)/ ri‘}“(O) accompanied by an increase in plate length L, that is in the para-
meter y, see Fig. 10(a). The solution in Fig. 10(b) for { = 0 refers to a rigid—plastic—frictional interface. As in
the previous case the effect of interfacial elasticity is quite strong, though the value of K; does not enter the
condition (84).

Fig. 11 presents the cohesive zone length sq4 = s; — 5, as a function of s, that is the length of damaged
interface. The initial linear part of each plot refers to the situation when there is no frictional contact
and we have only cohesive interaction. In such a case there is simply sq = s;. The subsequent nonlinear
section depicts the influence of frictional stress upon the cohesive zone length. Fig. 11 presents the solu-
tion in terms of dimensionless parameter { = K/K; and depicts the influence of interfacial elasticity.
For { =0 we have a rigid—plastic—{frictional interface, for { =1 the bonding is elastic-perfectly brittle.
An interesting fact should be noted at this point, that is the end effect. For { close to zero the fully

wP(L) =0, WP(sy) = W' (s;) = WP (s3) = w'(s;).
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Fig. 10. Medium length solution. The loading traction 7,,(0) versus loaded end displacement w(0) for: (a) various values of y = r,L—
the influence of plate length L; (b) various values of { = K,/K—the influence of interface compliance with respect to its softening
response; { = 0, rigid—softening—frictional interface; { = 1, perfectly brittle interface. The dashed line refers to the rigid—frictional
model of the interface.

developed cohesive zone has a constant length for almost entire delamination process. Its value can
be approximated by arccosn/r, (see Mréz and Bialas, accepted for publication). However, when the cohe-
sive interface approaches the stress free end x = L, its length starts to increase. This is due to an interaction
with the boundary x = L. This end effect is not present in the case of rigid—softening interface (refer to
Mréz and Biatas, accepted for publication), where the cohesive zone has a constant length equal exactly
arccosn/rs. For { approaching unity, there is no stabilization in the length of cohesive zone for any parti-
cular loading stage. The perfectly brittle character of interfacial softening leads to instantly increasing value
of 84

Fig. 12 presents response domains provided by conditions (51) and (82) for short, medium and long solu-
tion types in {y,n} plane. It allows for a prediction of structure response when a set of geometry and mate-
rial properties is given. It should be noted that conditions (51) and (82) do not depend on the bond elasticity
coefficient K. Thus, presented solution types remain unchanged by the interface stiffness, though it influ-
ences the overall system response.
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Fig. 11. The development of cohesive zone length sq = 51 — 5, as a function of s;. The influence of interface compliance with respect to
its softening response { = K,/K;; { = 0—rigid-softening—frictional interface; { = 1—perfectly brittle interface.
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3.3. Long plate solution

Let us consider now a long plate solution, that is a situation when the material and geometric parameters
satisfy the following condition:
_n
V1—-n?
The first three delamination stages are the same as in the case of a medium plate, that is there are following
zones at the interface:

¥ = rsL > arccosn +

o first phase: elastic zone,
e second phase: plastic and elastic zones,
e third phase: friction, plastic and elastic zones.
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Analysis of the derivative dw'(x, s;)/0s, performed in the previous section revealed existence of a region
where the plate exhibits reverse displacement. The coordinate s3 of the transition point is provided by Eq.
(81) and it monotonically increases with increasing control parameter s;. The delamination process for this
failure phase is schematically presented in Fig. 13. The length of reverse displacement zone increases and

reaches its maximal value for s; = L:

Fig. 13. Long plate solution. Delamination phases.
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1 n
S3(si=L)=1L - arccos Vs\/l——nz’
that is when the elastic zone vanishes.

There are following zones developed at the interface during the subsequent loading stage: plastic, friction
and reverse slip. The control parameter now is s)—the coordinate of the transition point between plastic
and friction zones. The progressive delamination of the plate is executed by a monotonic increase of s, from
s> to L, where

1
s, = L —— arccosn,
S

with 5, being the value of s,(s) for s; = L, see Eq. (67). The displacement and stress fields for the plastic and
friction zones are given by:

e plastic zone, s, < x < L:

Plx,52) = 2 4 Te Ko COSI(L = ¥)]
wP(x,s2) X, +Ks K cos[r(L — s55)]’ .

Ko sin[ry(L — x)]

p . U\ )
w(6s2) = G T (87)
» _ cos[rs(L —x)]
°(x, $7) uaicos[rs(L ) (88)
e friction zone, 53 < x < §5:
o o Te— U T
W (x,2) = 5 (v = 2)” + 5 tanlrs (L — s2))(x = s2) S 4 (89)
r na porsG
rxy(x7 5) = — - (x—s2) — : tan[rs(L — s2)], (90)
' (x,5,) = uo. (91)

Let us note that Egs. (86)—(91) are identical to (58)—(63) since they refer to the same displacement fields
as well as the boundary and continuity conditions. However, the fields (89)—(91) cannot be accepted as the
correct solution since the rate of deflection changes its sign within the frictional interface. In fact, the
derivative:

oWt (x, 57)

5 =0 (92)

vanishes at x = s3 and becomes negative for 0 < x < s3. Thus, there is a transition point between the for-
ward (W' > 0) and the reverse (W' < 0) displacement zones. By substituting (86) into Eq. (92), one obtains a
formula relating s3 to the loading parameter s,:

§3=15) — rl cot[rs(L — s7)]. (93)

The value of 53 decreases from 55 to minus infinity when s, increases from s, and approaches L, meaning
that the length of reverse displacement zone becomes shorter. It has been schematically presented in Fig. 13.
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After the reverse displacement zone has vanished, there are two regions at the interface: plastic and fric-
tion. The displacement and stress fields are respectively provided by Eqs. (58)—(63). This delamination
phase is associated with the progressive slip and the evolution of s, to its limit value L, when the plastic
zone is erased and the limit state is reached.

We shall analyze now the displacement and stress fields at the reverse slip zone. Detailed analytical solu-
tion requires two more interfacial regions to be considered, namely elastic unloading and frictional unload-
ing with the shear stress 7 equal —uo. However, this would further complicate the equations, since the
loading history should then be included in the analysis. A numerical solution will be constructed for the
reverse displacement region 0 < x < s3. Egs. (86)—(91) derived for the remaining section of the plate
s3 < x < L still hold.

Let us divide the region 0 < x < 53 into finite differences of length Ax, where the value 53 is given by (85).
Thus, we have chosen n points lylng in the interval 0 < x < 53 as indicated in Fig. 14. As discussed previ-
ously, during the fourth loading phase the length s; of reverse displacement zone increases from zero to 5;
and then subsequently decreases to zero. It should be noted, that we have provided analytical expressions
for displacement fields w(x), where x belongs to the interval s3 < x < L. Therefore, the values w(s3), w'(s3),
w”(s3) are also known.

Let us assume that during the forth loading phase, that is when the reverse displacement zone develops at
the interface, its length s3 subsequently takes the following values:

x1=0, xx=Ax, x3=2Ax, ..., x,=235;.

Let us denote by w;; the plate displacement at point x; when s3 is equal to x;. By making use of Taylor
series expansion we can write:

Wi = Wig1y — Wiy Ax 43w, A, (94)

where wi,, ;, wj,, ; are first and second derivatives of w function at point x;1; for s3 equal to x;. Since the
values w(ss), w (s3) w"(s3) are known, the formula (94) provides the displacement w;_, ;.
Let us define the trial interfacial stress at point x;:

TFrial — Kt (Wi‘j _ Wi‘j—l) —+ Ti.jfl . (95)

Thus, the 7@ stress refers to elastic unloading of the interface. If the following condition is satisfied:
uo, (96)

we have an elastic unloading only and

| tr1a1|

trial

Ti‘j = ‘Ci

If the condition (96) is not satisfied, then there is a frictional stress at the interface and we have:

Ti,j = HO Sign(Wl'J' — W,‘ﬂj,[). (97)

_ reverse

w(X) displacement
friction .

zone plastic  glastic

Zone zone

Xi Xisx S3 S, S; L
AX

Fig. 14. Division of the reverse displacement zone into finite differences of length Ax.
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When the value of 7;; is known, the second derivative of function w(x) at point x; is provided by
1" Tij
W= 98
Mo Gt (%8)
being analogous to expression (33).
The wj; derivative can be obtained from the Taylor series expansion. From formula

_ / 1,/ 2
Wit = Wiy + Wi,ij + iwz:ij )
one can derive w;; in the form:

Wi, —wi;, 1
Wiy = i = WA, (99)

The expressions (94), (98), and (99) provide the displacement w and the derivatives w’, w” at point Xx,.
Subsequently, we move to x;_; point and derive these quantities by using the same algorithm. Thus, for
a given length 53 we know the displacement and stress state at every point x;, i = 1,...,n within the reverse
displacement zone.

After the elastic interfacial zone has disappeared, the loading parameter is s,. We continue to use the
same algorithm for displacement and stress fields within the reverse displacement zone. On contrary to
the previous delamination phase, the length s; of reverse displacement zone decreases now from 53 to zero
and the values of w, w’ and w” at point s3 are derived from Eq. (89).

When the reverse displacement zone has vanished, there are plastic and friction zones left at the inter-
face. The displacement and stress fields are provided by Egs. (58)—(63). The interface is fully damaged when
the value of s, reaches L.

After the reverse displacement zone has vanished, there are two regions at the interface: plastic and fric-
tion. The displacement and stress fields are respectively specified by formulas (58)—(63). This delamination
phase is associated with the progressive slip and the evolution of s, to its limit value L. Then, the plastic
zone is erased and the limit state is reached as discussed previously.

The present solution describes the quasi-static response assuming the process to be controlled by the pro-
gressive front of the plastic zone. Fig. 15 reveals a complex system response. It is seen that in order to per-
form the progressive delamination, a cyclic loading along a specific loading path is required. The number of
hysteretic loops in the 7,,(0) — w(0) relation depends on the value of dimensionless parameter . By keeping
the K constant and varying only the plate length L, we obtain a different number of loops. The number of
loading cycles required to damage the interface increases with increasing L. The results show that the part
of the structure in the x € (0,s;) zone performs a flattering movement with subsequent forward and reverse
displacements. This process cannot be executed either by stress or displacement controlled loading. In prac-
tice it may lead to an unstable behaviour with a critical point related to the disappearance of undamaged
interfacial area. A dynamic mode could follow next starting from this limit state. However, the present
solution clarifies the nature of critical points associated with the delamination process and can provide a
reference solution for numerical algorithms attempting to generate equilibrium paths in the post-critical
states. The reason for the combined decrease in loading traction and loaded end displacement is the elastic
energy, stored in the plate during the previous loading phase and being released to debond the structure.
For a longer plate there is more elastic energy in the structure and consequently a greater number of load-
ing cycles is required for its dissipation at the frictional interface. Any extra work by external forces would
result in a dynamic response.

Fig. 16 presents the effect of interfacial stiffness. The dimensional parameter ( is defined by { = K,/K,,
where K, is the interfacial softening modulus associated with irreversible slip component and K is the inter-
facial stiffness. For { = 1 we have a brittle interface, for { = 0 the interface is rigid—plastic. It is seen, that the
value of { also influences the number of hysteretic cycles required to fully debond the structure. For
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Fig. 15. Long plate solution. The loading traction versus loaded end displacement. The solutions for various values of parameter
g =rsL.

decreasing { the number of hysteretic loops in 7, ~ w(0) relation increases. In the limit case of { = 0, that is
for rigid—plastic interface, the number of loading cycles approaches infinity. It is important to notice, that
the interfacial elasticity is required to construct the complete quasi-static solution. In the companion paper
Mréz and Biatas (accepted for publication), a rigid-softening interfacial model was considered. Due to the
discontinuity in the constitutive relation for the interface, it was impossible to construct a complete solution
for a long plate case. The present approach explains this phenomena stating that for an increasing stiffness
an increasing number of hysteretic loops is required, approaching infinity in the limit case.

In the paper by Schreyer and Peffer (2000), a fiber pullout problem was treated by reflecting the effect
of deformable medium surrounding a fiber by an interface, with the surrounding medium assumed to be
rigid. The fiber was treated as an elastic body and three-dimensional effects associated with normal stresses
due to Poisson’s ratio were neglected. In the case of progressive interfacial failure, the shear stress at the
interface was assumed to be a linearly increasing function of relative tangential displacement. When a crit-
ical state was reached, the stress decreased linearly to zero, resulting in no traction at contact for a fully
damaged interface. The present model provides results obtained by Schreyer and Peffer (2000) by setting
uo =0, that is for the frictionless case. It should be noted that in the case of frictionless solution, the pro-
gressive delamination does not lead to a hysteretic response in the loading stress—loaded end displacement
relation. The loading force either decreases to zero with increasing displacement, or there is a combined

decrease of loading force and loaded end displacement leading to interfacial failure (see Schreyer and Peffer,
2000).
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Fig. 16. Long plate solution. The loading traction versus loaded end displacement. The solutions for various values of parameter
{ = K,/K;; { = 1—brittle interface; { = 0—rigid-plastic interface.

4. Finite element validation

In the present section we shall compare the obtained analytical results of the shear beam model with a
finite element analysis of an elastic plate bonded to a rigid substrate by a cohesive interface. The problem
presented in Fig. 5 shall be treated as two dimensional, with elastic plane stress elements for the plate mate-
rial and with zero thickness interfacial elements.

As a starting point for the derivation of the finite element equations, we take the week form of equili-
brium equation (4):

/o- : VowdQ +/ (Tnod, + Tyod,)dS = / towds, (100)
Q Sinter Sext

where ow stands for kinematically admissible virtual displacement and dd,, and dd, are the virtual relative
displacements at the interface, respectively for normal and tangential separation. The integral over S, 18
the work of interface normal and shear stresses on the displacement discontinuity, whereas the remaining
formulas in Eq. (100) resemble the standard weak formulation of equilibrium equation.

The vector {d,,d;} " of relative displacements along the interface reduces in our case to the plate displace-
ment field w, since the structure is bonded to a rigid substrate. An interface element is presented in Fig. 17,
with nodes 5, 6, 7, 8 assumed to have zero displacements, as they are a part of the rigid substrate sur-
face. Let us denote the displacements of node o (=1, 2, 3, 4) by wj and w? for tangential displacements
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Fig. 17. Finite element of the interface.

respectively along ff and & axes. Assuming the linear approximation of the relative displacement field along
the interface element, we have:

we(&, B) = Niwy + Naw? + Naw? + Now,
wp(&, B) = N1W,1; —I—Nzwfg +N3w/3} +N4w‘/§,

where the shape functions N; are of the form:
Ni =31+ &8+ B,p).

In order to describe the delamination process, we shall use the incremental constitutive relations formu-
lated in Section 2.1. The interface is subjected to compressive stresses and the yield function F is given by
Eq. (16), whereas the non-associated plastic potential by Eq. (18).

Time discretization provides the following set of equations:

w:+1 = Wnit — wzs7+1a (101)
Tptl = Ktw;:,+1) (102)
a(I) n
W =W+ Al % (103)
K,
Vit = Vo + 5 M, (104)
F=|t|+uo—r,,6 =0, (105)
® = |}, (106)

where the parameter  describes the softening process, (*), stands for the previous state and (+),+; refers to
the current, or unknown, state. The value of K, is the softening modulus associated with the plastic slip
component. The relation between K, and K is given by Eq. (25).

Assuming the linear degradation of critical shear stress 7. as a function of inelastic displacement w* we
have:

— {TB<1 - ¢n+1)7 l//11+] < 17 (107)

07 l//n-%—l > L.

For yy > 1 the interface is fully damaged and there is only frictional interaction at the interface.
By making use of the fully implicit integration scheme, we seek for a solution satisfying the yield function
(105) and the flow rule (103) at the end of each time step. Since the process is displacement controlled, for a
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given displacement increment Aw,; = w,+; — w, we postulate a trial shear stress at the interface in the
form:

i — o K Aw,,. (108)

n+1

If for the stress T we have F <0, then there is no failure evolution associated with the displacement
increment Aw,; and the shear stress t equals ¢, For 7% yielding > 0 we have an interfacial failure
development and the amount of irreversible slip w; ., and current values of parameters ¥, and A4,
are obtained simultaneously from Eqgs. (103)—(105) by using the Newton—Raphson iteration scheme. The
elastic slip and the shear stress at the interface are then calculated respectively from Egs. (101) and (102).

The plate material is modeled by two dimensional plane stress elements. Thus, the value of uniform nor-
mal traction ¢ acting on the upper plate surface does produce neither any stresses nor structural displace-
ments and only enters the yield function (105) as a loading parameter.

Let us assume that the plate is a granite block with the value of Young modulus equal to
E = 4x10* MPa and Poisson’s ratio v = 0.25. The shear strength is t? = 30 MPa and the friction coefficient
1= 0.64. The resulting Kirchhoff modulus is G = 1.6 x 10* MPa. The plate dimensions are L =2m,
b=4m, t=0.2 min order to provide the anti-plane shear state. The traction ¢ acting on the upper surface
has the value ¢ =20.1 MPa and the resulting friction stress for the fully damaged interface is
po =12.9 MPa. The value of the dimensionless parameter n = po/(uo + 1°) equals n =0.3. By varying
the interfacial softening modulus K, we can obtain the delamination scenario characteristic for short, med-
ium and long plate solutions.

According to the analytical results for the shear beam model, in order to obtain a short plate solution,
the dimensionless parameter y has to satisfy the inequality:

K
7= 1/52 < arccosy = arccos 0.3 = 1.2661.

For the subsequent simulation of short plate delamination the value of K; = 800 MPa/m has been assumed
which, with the values of G and ¢ already introduced, satisfies the short plate condition.

The delamination process is displacement controlled by an increasing value of displacement u,(y,x = 0)
of plate boundary for x = 0. It has been assumed that the displacement u,(y,x = 0) in x direction is con-
strained, that is we have u,(y,x =0) = 0.

Fig. 18 presents the relation between the displacement u, and the stress 7., at point 0, that is at the origin
of coordinate system, see Fig. 5. The continuous line was obtained using the analytical solution for the

Txy [MPa]
350
300
250
200
150

100

analytical
sop —ee— - FEM

0.01 0.02 0.03 0.04 0.05 0.06 uy [m]

Fig. 18. Load—displacement curves for the short plate solution: dashed line—results of numerical simulation for two dimensional
model; continuous line—analytical solution for shear-beam model.
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Fig. 19. The variation of interfacial shear stress 7, [MPa] during the course of delamination for the short plate response; the
subsequent displacements u,, of boundary x = 0: (a) 26 x 10~ m, (b) 0.02 m, (c) 0.032 m, (d) 0.042 m, (e) 0.06 m.
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shear beam model, whereas the dashed line is a result of numerical simulation performed for the two dimen-
sional system. The simulation results are very close to the analytical solution during the early delamination
stages. As the failure progresses though, the differences become more visible and disappear only during the
last delamination stage, that is when there is only frictional interaction at contact. It is seen, that the de-
crease of loading force is smoother in the case of two dimensional simulation.

Fig. 19(a)—(e) present the variation of interfacial shear stress 7, during the delamination process obtained
for the following values of displacement at point 0: 26 x 10~ m, 0.02 m, 0.032 m, 0.042 m, 0.06 m. For clar-
ity, the deformed mesh has been magnified and does not present the exact solution for the displacement
field. Fig. 19 were obtained for subsequent delamination phases of short plate and thus we have: in (a)
the interface is fully elastic and the shear stress is below the critical value 7.; in Fig. 19(b) the interface
is in the elastic and plastic regimes; Fig. 19(c) presents the evolution of interfacial plastic zone; Fig.
19(d) shows both plastic and frictional stresses at the interface, whereas in Fig. 19(e) only frictional stress
for fully damaged interface is presented. The 7, stress presents a slight dependence on the y coordinate, so
interfacial zones of elastic, plastic and frictional stresses are not exactly parallel. This is due to the flexural
effects still present during the course of delamination and playing a dominant role mainly along the stress
free boundaries. Moreover, as presented in Fig. 19(e), the fully frictional interface becomes unloaded below
the frictional stress value uo = 12.9 MPa, which is also a result of flexural response of the structure.

Let us discuss now the medium length plate delamination. The dimensionless parameter y has to satisfy
the condition:

_n

V=

For the simulation the softening modulus K equal to K; = 1800 MPa/m, satisfying the above inequality,
has been assumed.

Fig. 20 presents the relation between the displacement u, and the stress 1., at point 0, that is at the origin
of coordinate system. The continuous line was obtained using the analytical solution for the shear beam
model, whereas the dashed line is a result of numerical simulation performed for the two dimensional sys-
tem. As in the case of short plate solution, the simulation is very close to the analytical solution during the
early delamination stages. As the failure progresses though, the differences become more visible. In partic-
ular, the delamination stage associated with the decrease in loading force after the elastic zone has been
terminated, is significantly different. The shear beam model provides an abrupt jump in the value of loading
traction, whereas the numerical simulation results in a more compliant system response. The differences

arccosn < y < arccos# +
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Fig. 20. Load-displacement curves for the medium plate solution: dashed line—results of numerical simulation for two dimensional
model; continuous line—analytical solution for shear-beam model.
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Fig. 21. The variation of interfacial shear stress 7, [MPa] during the course of delamination for the medium length response; the
subsequent displacements u, of boundary x = 0: (a) 25 x 10~%m, (b) 0.015m, (c) 0.019 m, (d) 0.023 m, (e) 0.035 m.
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Fig. 22. Load-displacement curves for the long plate solution: dashed line—results of numerical simulation for two dimensional
model; continuous line—analytical solution for shear-beam model.

between the finite element simulation and the analytical model are more visible than in the case of short
plate solution.

Fig. 21(a)—(e) present the variation of interfacial shear stress 7, during the delamination process, ob-
tained for the following displacement values at point 0: 25 X 107%m, 0.015 m, 0.019 m, 0.023 m, 0.035 m.
As in the previous case, the deformed mesh has been magnified and does not present the exact solution
for the displacement field. Fig. 21 were obtained for subsequent delamination phases for the medium plate
and thus we have: in (a) the interface is fully elastic and the shear stress is below the critical value 7.; in
Figure (b) the interface is in both elastic and plastic regimes; Figure (c) presents the evolution of frictional,
plastic and elastic zones; Figure (d) shows both plastic and frictional stresses at the interface, whereas in
Figure (e) only frictional stress for fully damaged interface is presented. The 7, stress presents a slight
dependence on the y coordinate since the interfacial zones of elastic, plastic and frictional stresses are
not exactly parallel. As in the case of short plate solution, this is due to the flexural effects still present du-
ring the course of delamination and playing a dominant role mainly along the stress free boundaries. Again,
as presented in Fig. 21(e), the fully frictional interface becomes unloaded below the frictional stress value
uo = 12.9 MPa, which is also a result of flexural response of the structure. Let us note that flexural inter-
action with frictional foundation leads to the effect of slip patterning with an infinite set of progressive an
reversive slip zones at the contact, cf. Stupkiewicz and Mré6z (1994).

For K> 1999 MPa/m we have a long plate solution. Due to the numerical convergence problems, the
full delamination process could not be performed. These difficulties arise from the fact, that displacement
controlled simulation does not lead to a progressive failure evolution and the quasi-static equilibrium path
cannot be generated. Fig. 22 presents the solution for K; = 4500 MPa/m obtained only up to the point of
loss of convergence. It is associated with the first loop in the load-displacement curve for the shear beam
model. Thus, the simple model of decohesion provides a reference solution for numerical algorithms search-
ing for quasi-static equilibrium paths in more complex cases.

5. Summary and conclusions

The present work aimed at analytical and numerical solutions of anti-plane shear damage growth at an
interface between a plate and a rigid foundation. The concept of cohesive zone ahead of crack tip was used
in order to simulate progressive damage and ultimate failure. A particular attention was given to the
analysis of critical and post-critical states associated with growth of delamination zone under monotonic
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loading. The analytical quasi-static solution was obtained by neglecting plate flexural effects and assuming
linear softening constitutive relation for the interface. The control parameter driving the failure process was
the length of damage zone. The analytical results were next validated by a finite element analysis of plate
delamination under plane stress conditions, bonded to a rigid substrate. It was shown that the types of re-
sponse can be specified in terms of two dimensionless parameters y and 5, with corresponding short, med-
ium and long plate solutions. Subsequently, there are following zones developed at the interface for the
short plate solution:

. elastic,

. cohesive and elastic,
. cohesive,

. friction and cohesive,
. friction.

D AW N =

The medium plate solution is characterized by the subsequent delamination phases:

. elastic,

. cohesive and elastic interfacial zones,
. friction, cohesive and elastic zones,

. friction and cohesive zones,

. friction zone.

DN W=

The long plate solution, being the most complex one, is characterized by the following scenario:

. elastic,

. cohesive and elastic interfacial zones,

. friction, cohesive and elastic zones,

. reverse displacement, friction, cohesive and elastic zones,

. reverse—forward displacement, friction and cohesive zones,
. friction and cohesive zones,

. friction zone.

NN AN =

In the case of both short and medium plate solutions, the unstable system response was related to a sud-
den decrease in the loading traction. It was associated with the end effect, that is the interaction between the
interfacial cohesive zone and the stress free end at x = L. Thus, the delamination process cannot be exe-
cuted by stress controlled loading, since it would lead to a dynamic behaviour. A displacement controlled
loading should be used, since it leads to a stable response, resulting in a fully damaged interface with fric-
tional interface tractions in the limit state. It was shown that the interfacial compliance defined by dimen-
sionless parameter { can significantly change the structural response, though it does not influence the
overall conditions defining short, medium and long plate solution types.

For the long plate solution there appear reverse slip zones with snap back response of the loaded bound-
ary. In order to execute a quasi-static delamination both the loading traction and the loading end displace-
ment should follow a unique equilibrium path, resulting in a hysteretic response. The structure close to the
loaded end performs a flattering movement with subsequent forward and reverse displacements. The num-
ber of cycles leading to complete delamination is dependent on dimensionless parameter y, that is on the
plate length. The reason for the combined traction and displacement interaction is the elastic energy stored
in the plate and next released to debond the structure. Thus, an extra work by external forces would be
transformed into kinetic energy and a dynamic mode would follow. It was shown, that the number of
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hysteretic cycles is also dependent on the interface stiffness captured by dimensionless parameter {. For a
brittle interface no cycles are required to debond the structure. For increasing interfacial stiffness we have
an increasing number of hysteretic loops, approaching infinity in the limit case of rigid—plastic bond.

The shear beam model was validated by a finite element analysis. It was shown, that one can neglect the
flexural deformation provided that the plate width is greater than its length. The analytical solution de-
scribes qualitatively the delamination process and is close to the numerical results during the early delam-
ination phases. Following the critical point associated with maximum value of traction subjected to the
structure, differences increase and disappear only when the structure is fully debonded with frictional con-
tact at the interface.

Displacement control does not provide a complete solution for the long plate case. There is a divergence
in numerical procedure at the beginning of first hysteretic loop. Thus, the analytical shear beam model pro-
vides a reference solution for numerical algorithms searching for quasi-static equilibrium paths. A dynamic
analysis would provide more clear insight into failure evolution in the final stage of damage.
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